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Abstract: Polarized neutron scattering data for the nuclei ?Al, "**Cr, ™*Cu, *°Y, "W, »*'Pb,
209Bi, ?Th and ***U were analyzed in terms of spherical, coupled channels and microscopic op-
tical model potentials. The measurements at typical 7.75 MeV neutron energy were performed

at the Stuttgart SCORPION facility.
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Introduction

Analysing power data together with the correspond-
ing differential cross section measurements not only pro-
vide a better determination of optical model spin-orbit
parameters, but also reduce the ambiguities inherent in
the other parts of phenomenological potentials. They
thus constitute an important data base for testing what-
ever model potential.

At the Stuttgart ScORPION facility polarized neu-
tron scattering on a large number of nuclei at an incident
neutron energy of typical 7.75 MeV has been investigated
during the past years. Most of the data have been ana-
lyzed in terms of the conventional spherical optical model
as well as coupled—channels calculations in the case of col-
lectively excited nuclei. The application of microscopic
potentials from various nuclear matter approaches is in
progress.

Experimental Method

Polarized neutrons were produced in the reaction
*Be(a,n)'?C with the 500uA a-current of the 4 MeV Dy-
namitron. The f—production target, a spin-flip magnet,
4 NE213-detectors and 4 monitors are located in a close
doubly shielded geometry. The contribution of v-events
could be kept below typically 1% by means of sophisti-
cated n-y-discrimination circuits. The background-sub-
stracted pulse height spectra were unfolded with the code
FANTI [1]. The calibration of the setup to absolute cross
section values was performed by normalization to the hy-
drogen cross section using a polyethylene sample. Cor-
rections due to flux attenuation, multiple scattering and
depolarization in the scattering sample were carried out
with the Monte Carlo code XJANE [2]. A more detailed
description of the experimental setup and the various
methods of data evaluation can be found in Ref. [1].

Phenomenological Optical Model Analysis

For both spherical and deformed nuclei the code
Ecis79 [3] was employed, which uses a potential of the
following form:

U(r) = —Vefv(r) + 4iap Wp gp(r)
+ X% (Voo +iWs0 ) — gsolr) (22-7), (1)

with the Woods-Saxon form factors

1 dfx
fx(r) = 1—+—e:cp(——'~;—i_1) , gx(r) = ) (2)

where X = R, D, SO stands for real, imaginary surface
derivative and spin-orbit terms, respectively. The nuclear
radius R is given by R = R, = r,A4!/3 for spherical nuclei.
In the case of deformed nuclei the radius is expressed by
an expansion in Spherical Harmonics.
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Fig. 1: Differential cross section and analysing power
of ™*Pb. SOM calculations were done with
(full) and without (dotted) W,o.
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Fig. 2: Differential cross section and analysing power
of Bi. SOM calculations were done with

(full) and without (dotted) W,,.

Spherical Model Analysis (SOM)

The results for "**Pb and 2°°Bi are shown in Figs. 1
and 2. The calculations revealed much better results
when the imaginary spin-orbit term was included in the
above model potential ( see for instance Ref. [4] ).

Coupled Channels Analysis (CC)

In the analysis for the nuclei "*W, 2*2Th and **U
it again turned out that the inclusion of W,, lead to a
significant improvement of the model fits. The results are
shown in Figs. 3, 4 and 5.

?7Al was treated as a 2ds/; proton hole weakly cou-
pled to a 28Si core. According to the model description
of silicon a rotational coupling scheme 0% — 2* with the
deformation parameters of Si was used. The excited 2+ —
state is split into a quintet without changing the shape of
the inelastic cross section. The above model, already suc-
cessfully applied for the description of differential cross
sections at 11, 14 and 17 MeV [5], is also supported by
the analysing power data of this work ( see Fig. 6 ).
The large compound scattering contributions were calcu-
lated with the code CERBERO [6], but to get the correct
CC—transmission coeflicients, the corresponding input of
Ec1s79 was adjusted in 'SOM-mode’ to get the same re-
sults.

"tCr is composed of 83% *2Cr and 17% **Cr. Pro-
vided the excited core model holds also for *3Cr, the
scattering data should be similar for both isotopes. The
calculations with the harmonic vibrational model agree
quite well with the data, but as the level scheme of the
52Cr - core indicates an anharmonic vibrator, the results
given in Fig. 7 were also calculated with an anharmonic
model.
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Differential cross section and analysing power
of "*W. CC calculations were done with (full)
and without (dotted) W,,.
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Differential cross section and analysing power
of 2Th. CC calculations were done with (full)
and without (dotted) W,,.
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Fig. 6: Differential cross section and analysing power

Fig. 5: Differential cross section and analysing power
of 27Al together with CC model results.

of 238U, CC calculations were done with (full)
and without (dotted) W,,.
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Fig. 7: Differential cross section and analysing power Fig. 8: Differential cross section and analysing power
of ™tCr. CC calculations were done with an of ™Cu together with CC model results.
anharmonic (full) and a harmonic (dotted) vi-
brational model.
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Fig. 9: Differential cross section and analysing power
of 89Y together with microscopic optical model
results.
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Fig. 10: Differential cross section and analysing power
of "'Pb together with microscopic optical
model results.

Both isotopes of "*Cu can be described in terms of
the excited core model, too. Here a 2ps/2 proton couples
to a harmonic vibrational Ni — core {7,8] . The geometri-
cal parameters of ®¥Cu and ®Cu are equal, whereas the
deformations are different. The quartet arising from the
first excited 2+ — Ni-core could be observed, although un-
resolved. According to the above model nuclear reduced
matrix elements could be specified, thus allowing a suc-
cessful parameter search for the mixture of both isotopes

( see Fig. 8 ).

Microscopic Potentials

Differential cross section and analysing power data
for Y and "*Pb have been analysed with a renormal-
1zed microscopic potential of the Brieva-Rook-von Ger-
amb type {9], which was provided in tabulated form [10].
Emphasizing the fact that these potentials were applied
without any change of geometry, they lead to quite pro-
mising model fits. See Figs. 9 and 10 for the results. The
analysis with a similar approach of Yamaguchi et.al. [11]
and with the effective potentials of Jeukenne et.al. [12] is
in progress.
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